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Abstract. Informative landslide hazard estimates are needed to support landslide mitigation strategies to reduce landslide risk 

across the United States. Whereas existing national-scale landslide susceptibility products assess where landslides are likely 

to occur, they do not address how often, which is a critical element of landslide hazard and risk assessments. In particular, the 

U.S. Federal Emergency Management Agency’s National Risk Index (NRI) requires landslide frequency estimates to inform 10 

expected annual loss estimates. In this study, we present county-level landslide frequency (landslides area-1 y-1) estimates for 

the 50 U.S. states. We applied Bayesian negative binomial regression to estimate both the expected (average) reported landslide 

frequency and full distribution of annual landslide counts for each county. We compared a suite of models that used 

combinations of landslide susceptible area, probability of potentially triggering earthquakes, frequency of potentially triggering 

precipitation, and ecological region as predictors. We trained our models with landslide inventory data from counties with the 15 

most comprehensive records available nationwide and used zero-inflated negative binomial distributions as an incompleteness 

model to correct for temporal reporting gaps. We selected a preferred model based on information criteria and physically 

plausible parameter estimates. Our preferred model showed that average annual reported landslide frequencies vary by five 

orders of magnitude across U.S. counties, ranging from 0.002 (0.00015–0.05) landslides 1000 km-2 y-1 in Kusilvak Census 

Area, Alaska to 29 (19–46) landslides 1000 km-2 y-1 in Lake County, California, reflecting the country’s strong variations in 20 

landslide susceptibility, earthquake probability, and other factors for which ecological region serves as a proxy. Counties with 

estimated frequencies in the top 20% of all counties are predominately along the West Coast of the continental United States, 

in mountainous regions of the Pacific Northwest and Intermountain West, in locally steep or earthquake prone regions of the 

Midwest and Southeast, along the Appalachians, in southern Alaska, and on some Hawaiian Islands. By examining the number 

of landslides predicted in 99th percentile years for each county, we identified that 26% of U.S. counties likely have potential 25 

for widespread landsliding with more than 10 landslides 1000 km-2 y-1, even when such large events have not been reported in 

the training data for that county. Overall, our results better represent the range of possible landslide frequencies and spatial 

variations than previous national-scale estimates reported in the NRI and can inform other risk reduction and loss mitigation 

efforts across the United States.  
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1 Introduction 30 

Informative landslide hazard estimates are needed to support landslide mitigation strategies and reduce landslide risk 

across the United States (Godt et al., 2022). Landslides claim lives annually in the United States (Froude and Petley, 2018; 

National Research Council, 1985), and the landslide-related economic losses estimated decades ago (Schuster, 1996) would 

amount to $3–6 billion annually in 2024 U.S. dollars (U.S. Bureau of Labor Statistics, 2024). Changes in climate and land-

use, including urban development in steeper terrain, are expected to have increased these losses in recent years and are likely 35 

to continue to do so in the future, unless effective mitigation practices are implemented (Gariano and Guzzetti, 2016; Ozturk 

et al., 2022). To address this major economic disruption, the United States Geological Survey (USGS) developed a National 

Strategy for Landslide Loss Reduction (Godt et al., 2022). This strategy calls for developing a publicly accessible national 

landslide hazard and risk database to ensure that decision makers have access to nationwide information on landslide hazards 

and risk, among other goals. In this context, the USGS is working with the Federal Emergency Management Agency (FEMA) 40 

to improve the quantitative characterization of landslide hazards in ongoing updates to their National Risk Index (NRI) (Zuzak 

et al., 2022). 

The NRI is a relative metric of community-level risk assessed across 18 natural hazards, including landslides (Zuzak et 

al., 2022). The index combines expected annual loss estimates for each of these hazards with social vulnerability and 

community resilience scores for each U.S. county and census tract (Federal Emergency Management Agency, 2023b). 45 

Expected annual loss is a common metric used to quantify risk from natural hazards and results from multiplying the expected, 

or average, frequency of a hazard with the population exposed and a historical loss ratio that quantifies loss resulting from past 

events. 

Landslide frequency, which we define as landslides per area per time interval (Corominas and Moya, 2008), is a critical 

component of expected annual loss and thus risk, but has rarely been assessed, particularly at the scale of the entire United 50 

States (Corominas et al., 2014; Glade and Crozier, 2005). Many studies have assessed landslide susceptibility at local to 

continental scales (Reichenbach et al., 2018), which indicates how prone an area is to landsliding and addresses the question 

“where are landslides likely to occur?” For example, the USGS recently published the National Landslide Susceptibility Model, 

which estimates landslide susceptibility based on topographic characteristics for the 50 U.S. states and Puerto Rico (Mirus et 

al., 2024). Few studies, however, have assessed frequency, which incorporates temporal probability and addresses the question 55 

“how often are landslides likely to occur in a given area?” (Corominas and Moya, 2008; Dahal et al., 2024a; Guzzetti et al., 

2005; Ko and Lo, 2018; Lombardo et al., 2020). Differences in the frequency of occurrence of landslide triggering conditions, 

the most common of which in the United States are large earthquakes and precipitating storms, can drive differences in 

landslide frequency between areas that are equally susceptible to landsliding. For example, a steep area in an earthquake-prone 

wet region will likely have a higher landslide frequency than a similarly steep area non-earthquake-prone dry region. When 60 

combined with estimates of magnitude (how large are landslides likely to be?), susceptibility and frequency make up the key 
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components of the most widely accepted definition of landslide hazard (Crozier and Glade, 2005; Dahal et al., 2024a; Guzzetti 

et al., 2005). 

Landslide hazard estimates typically rely on either physics-based models of landslide processes or statistical models 

trained with historical records of landslide occurrences over time (Corominas et al., 2014). Physics-based models attempt to 65 

explicitly account for the geotechnical attributes of hillslopes to estimate the frequency of conditions that will lead to slope 

failure (Baum et al., 2010; Frattini et al., 2009; Iverson, 2000; Jibson, 2011; Salvatici et al., 2018). Consequently, these methods 

require detailed in situ data of local hillslopes to be accurate. Such data are highly heterogeneous and hard to estimate remotely, 

making it difficult to obtain accurate results over regions larger than catchment-scale. Alternatively, statistical and machine 

learning models analyse the patterns of past landslide events to estimate landslide hazard (Bordoni et al., 2021; Dahal et al., 70 

2024b; Di Napoli et al., 2023; Guzzetti et al., 2005; Lari et al., 2014; Marc et al., 2017; Segoni et al., 2018). These methods 

are generally preferred for assessing landslide hazard over regions larger than a few catchments because they require less data 

compared to physics-based models.  

Nevertheless, both data-driven and physics-based methods require accurate inventories of landslide timing and location 

over a sufficiently long temporal range to evaluate the validity of estimated landslide frequency (Corominas and Moya, 2008; 75 

Lombardo et al., 2020). The need for accurate landslide data presents a substantial challenge because landslide reporting is 

often spatially and temporally heterogeneous, even over small regions. As a result, application of statistical hazard models has 

generally been reserved for regional analyses in data-rich parts of the world (Bordoni et al., 2021; Guzzetti et al., 2005; Ko 

and Lo, 2018; Lombardo et al., 2020). Landslide inventory data are presence-only data, meaning that although inventories 

document reported landslides, some landslides that occur may go unreported. Landslide inventories thus reflect a combination 80 

of physical landslide processes and reporting processes. Failing to account for the reporting process can bias models and lead 

to incorrect estimates (Steger et al., 2021).  

The USGS maintains a National Landslide Inventory (Mirus et al., 2020), which is compiled from multiple federal, state, 

and local agencies, as well as academic publications and historical records from across the United States. The compilation is 

updated intermittently, and the current iteration (version 3.0, February 2025) compiled reported landslides from 55 local, state, 85 

and national-scale inventories (Belair et al., 2025). These reports are vector geospatial data containing points or polygons that 

represent slope failures along with a diverse set of attributes that may include time of occurrence. We use “landslide” as an 

overarching term to describe the range of slope failure types reported in these inventories which, where documented, include 

slides, falls, flows, and complex movements, among others. Inventories included in the compilation have different reporting 

approaches that capture different aspects of landslide frequency. Inventories compiled by transportation departments, like the 90 

Alaska Department of Transportation inventory (Alaska Department of Transportation and Public Facilities, 2022), for 

example, capture only landslides that impacted the road network, but may do so consistently over a given timeframe. In 

contrast, event-based inventories, like the USGS San Francisco Bay region 2016–2017 inventory (Corbett and Collins, 2023b), 

often map landslides triggered by storms or earthquakes during a short time period from optical imagery or high-resolution 

topographic data and tend to be more spatially complete over the domain mapped, but only capture individual events in time. 95 
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Bringing such diverse inventories together to estimate landslide frequencies over broader regions has shown promise in the 

Pacific Northwest region of the United States (Luna and Korup, 2022), but has yet to be attempted at national scale. However, 

an additional challenge is that many landslide susceptible regions of the United States completely lack temporal constraints on 

when landslides have occurred. Previous releases of the NRI estimated landslide frequency from events reported between 2010 

and 2021 in the National Aeronautics and Space Administration (NASA)’s Cooperative Open Online Landslide Repository 100 

(COOLR), which compiled landslides from news and citizen reports (Juang et al., 2019). As the reporting method of this 

catalog captures only events reported in the news or by citizens, it represents a small subset of all landslides that occurred over 

the reporting period and does not capture the high numbers of landslides triggered during widespread events. Noting that many 

landslide-susceptible regions of the United States had no reported landslides in this catalog, the NRI authors chose a default 

minimum value of 0.01 landslides y-1 for census tracts in these areas, which were later aggregated to county level (Federal 105 

Emergency Management Agency, 2023b). This approach likely misrepresents the true number of landslides, and hence 

landslide frequencies, and may not adequately portray the spatial pattern of landslide hazard across the United States.  

In this study, we estimated landslide frequency distributions for all counties in the 50 U.S. states as input to the 2025 

update of the NRI. We compared models trained with the best available landslide inventory data nationwide and varying 

combinations of relative indicators of county-level landslide susceptibility, frequency of potentially landslide triggering 110 

precipitation, probability of potentially landslide triggering earthquakes, and ecology as predictors. We introduced a pragmatic 

and adaptable Bayesian statistical modelling framework for estimating landslide frequency distributions, modelled as counts 

per area per year, at a national scale. Bayesian statistical models have advantages for estimating components of landslide 

hazard from spatially and temporally heterogeneous inventory data (Bryce et al., 2022; Korup et al., 2024; Lombardo et al., 

2020; Luna and Korup, 2022; Woodard et al., 2023). First, Bayesian statistical models are conditional on the available data, 115 

the model, and prior knowledge about parameter values and provide intrinsic estimates of parameter uncertainty through 

posterior distributions (McElreath, 2020; van de Schoot et al., 2021). This improves model interpretability compared to other 

statistical methods and allows us to transparently report model uncertainty given the available landslide inventory data. Second, 

by incorporating prior knowledge about a model’s parameters to estimate final values, models can consider the users’ 

expectations of what a parameter value should be to overcome sparse data issues in some regions (Patton et al., 2023; Woodard 120 

et al., 2023). Finally, Bayesian models provide frameworks that allow for updating model parameters in light of new data, 

meaning that if new landslide data is collected in the future, parameter estimates can be seamlessly updated. Our modelling 

approach can thus overcome some of the limitations associated with spatially and temporally heterogenous landslide inventory 

data. However, we emphasize that we estimate what reported landslide frequencies would be, if each county had available 

landslide inventory data like counties with the most comprehensive data nationwide. Our consistent estimates across counties 125 

are reported to promote an equitable allocation of resources and support improved resilience to landslide hazards (Dowling 

and Santi, 2014; Pollock and Wartman, 2020; Santi et al., 2011). 
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2 Data and methods 

We used Bayesian negative binomial regression trained on the best available landslide inventory data nationwide and 

physically relevant predictors to estimate county scale landslide frequency distributions. To do so, we:  130 

• Collected landslide inventory data with reported annual timing 

• Corrected historical inventory time series for reporting gaps using zero-inflated negative binomial distributions as an 

incompleteness model 

• Selected training counties based on data quality and coverage criteria 

• Chose physically relevant predictor variables at county-scale 135 

• Fit a series of Bayesian negative binomial regression models with varying combinations of predictors to training 

counties 

• Compared models using information criteria to identify a preferred model with highest estimated out of sample 

predictive accuracy and physically plausible parameter estimates 

• Used the preferred negative binomial regression model to predict landslide frequency distributions for all counties 140 

• Evaluated the model fit by comparing predictions to observations and its robustness by performing training-test cross-

validation 

• Compared our results to previous landslide frequency estimates from the NRI 

 

Our visualizations rely largely on color schemes from scientific color maps (Crameri, 2023) and ColorBrewer (Brewer et al., 145 

2013). 

2.1 Landslide inventory data with reported annual timing 

We used the most recent version of the USGS Landslide Inventories Across the United States compilation (Belair et 

al., 2025), which includes 991,272 landslides reported in 55 inventories created by local, state, and national entities. These 

inventories reflect a variety of reporting protocols, cover varying time periods and regions, and document a range of slope 150 

failure types. For this analysis, we first subset the compilation to landslides with a reported year of occurrence (189,282 

landslides). We then removed duplicates by (1) checking for points that overlap polygons and were reported in the same year, 

which can happen in inventories that include both point and polygon layers for the same slope failures, and (2) dissolving 

polygons that touch each other and were reported in the same year, which can occur when inventories map source and 

deposition areas separately for the same landslide, for example. Limiting our spatial domain to the 50 U.S. states leaves 77,714 155 

landslides from 33 inventories for further analysis (Table 1). By examining the time series for each inventory, we categorized 

these inventories into two classes with different reporting styles that affect the resulting time series of landslide occurrences: 

Historical and event-based inventories. Historical inventories report landslides over an extended period of time that may 
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include reporting gaps, and event-based inventories report landslides from specific events, like individual earthquakes or 

storms.  160 

 
Table 1. Landslide inventory overview 

Inventory Earliest 
year 

Latest 
Year 

Record 
length 

Number 
of 
reported 
landslides 

Event 
based 

State 
or 
local 

Zero-inflation 
(zv) median 

(95% Quantile 

Interval) 

Reporting 
gap 
corrected 
years on 
record 

Citation 

Alaska Department of 

Transportation 

2003 2022 19 6408 FALSE TRUE 0.03 (0.001, 

0.16) 

20 Alaska 

Department of 

Transportation 

and Public 

Facilities, 

2022 

Arizona Geological 

Survey 

2004 2018 14 1833 FALSE TRUE 0.47 (0.24, 

0.71) 

11 Arizona 

Geological 

Survey, 2017 

California Geological 

Survey 

1906 2011 105 3493 FALSE TRUE 0.73 (0.64, 

0.81) 

57 California 

Geological 

Survey, 2019 

Idaho Geological 

Survey 

1996 2018 22 1053 FALSE TRUE 0.77 (0.58, 

0.90) 

10 Lifton et al., 

2021 

Kentucky Geological 

Survey 

1971 2021 50 1156 FALSE TRUE 0.36 (0.24, 

0.49) 

43 Crawford, 

2022 

Maine Geological 

Survey 

1815 2018 203 45 FALSE TRUE 0.87 (0.83, 

0.91) 

44 Halsted, 2020 

Missouri Department 

of Natural Resources 

1982 2016 34 11 FALSE TRUE 0.79 (0.64, 

0.90) 

15 Missouri 

Department of 

Natural 

Resources, 

n.d. 

North Carolina 

Geological Survey 

1877 2024 147 2602 FALSE TRUE 0.61 (0.53, 

0.68) 

92 Bozdog, 2023 

University of 

Nebraska - Lincoln 

1983 2005 22 58 FALSE TRUE 0.31 (0.16, 

0.51) 

21 Institute of 

Agriculture 

and Natural 

Resources: 

School of 

Natural 
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Resources, 

n.d. 

New Jersey 

Geological Survey 

1782 2018 236 275 FALSE TRUE 0.70 (0.64, 

0.75) 

109 New Jersey 

Geological 

and Water 

Survey, 2018 

Oregon Department 

of Geology and 

Mineral Industries 

1889 2023 134 7996 FALSE TRUE 0.50 (0.41, 

0.58) 

98 Oregon 

Department of 

Geology and 

Mineral 

Industries, 

2024 

U.S. Forest Service 

Alaska Tongass 

1960 2023 63 569 FALSE TRUE 0.41 (0.30, 

0.53) 

59 U.S. Forest 

Service, 2024 

USGS Alaska Glacier 

Bay 

1985 2016 31 23 FALSE FALSE 0.65 (0.48, 

0.80) 

19 Bessette-

Kirton and 

Coe, 2016 

USGS Alaska St Elias 1985 2019 34 263 FALSE FALSE 0.07 (0.02, 

0.18) 

35 Bessette-

Kirton et al., 

2020 

USGS California 

Crow Creek 1998 

1997 1997 0 3537 TRUE FALSE   Coe et al., 

2004 

USGS California Dixie 

Fire Debris Flows 

2013 2022 9 1352 TRUE FALSE   Thomas et al., 

2023 

USGS California East 

San Francisco Bay 

2016-2017 

2016 2016 0 8450 TRUE FALSE   Corbett and 

Collins, 2023a 

USGS California Los 

Angeles County Jan 

2019 

2019 2019 0 281 TRUE FALSE   Rengers, 

2020 

USGS California 

Montecito Jan 2018 

2018 2018 0 12 TRUE FALSE   Kean et al., 

2019 

USGS California San 

Francisco Bay 

December 2022 - 

January 2023 

2022 2022 0 162 TRUE FALSE   Brien et al., 

2023 

USGS California 

Walpert Ridge 1998 

1998 1998 0 529 TRUE FALSE   Coe and Godt, 

2002 

USGS Colorado Front 

Range July 1999 

1999 1999 0 428 TRUE FALSE   Godt and Coe, 

2007 
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USGS Earthquake-

Triggered Ground 

Failure 

1971 2020 49 25105 TRUE FALSE   Schmitt et al., 

2017 

USGS Michigan North 

Manitou 

2014 2014 0 27 TRUE FALSE   Ashland, 

2022a 

USGS Michigan 

South Manitou 

2014 2015 1 26 TRUE FALSE   Ashland, 

2022b 

USGS Minnesota 1852 2019 167 672 FALSE TRUE 0.78 (0.71, 

0.83) 

69 DeLong et al., 

2021 

USGS Oregon 

Southern Coast 

Range Nov 1996 

1996 1996 0 207 TRUE FALSE   Coe et al., 

2011 

USGS Post-Fire 

Debris Flows 

2000 2013 13 316 FALSE FALSE 0.17 (0.04, 

0.40) 

14 Staley et al., 

2016 

USGS Seismogenic 

Mass Movements 

1977 2023 46 174 FALSE FALSE 0.41 (0.28, 

0.54) 

39 Collins et al., 

2022 

Vermont Geological 

Survey 

1969 2019 50 3049 FALSE TRUE 0.80 (0.67, 

0.89) 

23 Vermont 

Agency of 

Natural 

Resources, 

2020 

Seattle Department of 

Construction and 

Inspections 

1897 2041 144 1409 FALSE TRUE 0.26 (0.20, 

0.34) 

137 Seattle 

Department of 

Construction 

and 

Inspections, 

2023 

Washington 

Geological Survey 

1906 2022 116 2245 FALSE TRUE 0.50 (0.41, 

0.59) 

88 Washington 

Geological 

Survey, 2023 

 

https://doi.org/10.5194/egusphere-2025-947
Preprint. Discussion started: 1 April 2025
c© Author(s) 2025. CC BY 4.0 License.



9 
 

 
Figure 1. Reported landslides with annual timing in counties covered by state or local landslide inventories. (a)–(c) Total number of 165 
reported landslides with annual timing. ND = no data. (d)–(f) Length of record from earliest to latest reported landslide. ND = no data. (g) 
Example time series and (h) histogram of reported landslides from the California Geological Survey (2019) Landslide Inventory showing 
effect of reporting gap correction model. (i) Example time series and (j) histogram of reported landslides in Marin County, California (CA), 
showing how a county-level time series is constructed. Base map data in (a)–(f): U.S. counties from U.S. Census Bureau Cartographic 
Boundary Files 1:500,000 (U.S. Census Bureau, 2023a), non-U.S. administrative boundaries from Natural Earth (Natural Earth, 2022). 170 
Landslide inventory data subset from the USGS Landslide Inventories across the United States dataset (Belair et al., 2025). Projection and 
datum: (a), (d) continental United States - Albers North American Datum 1983 (EPSG:5070). (b), (e) Alaska - Albers North American 
Datum 1983 (EPSG:3467). (c), (f) Hawaii - Old Hawaiian (EPSG:4135).  
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2.2 Constructing reporting gap corrected time series  175 

We selected negative binomial distributions to model landslide frequency (events per area per year) because they are 

well-suited to over-dispersed count data in which the variance is greater than the mean, as is typical of landslide inventory data 

(White and Bennetts, 1996) (Fig. 1h). Although negative binomial and related distributions have been widely used in fields 

like ecology (e.g., Minami et al., 2007) and public health (e.g., Rose et al., 2006), they have seen little use in landslide research. 

Negative binomial distributions have two parameters: a rate parameter (µ), which indicates the expected, or average, frequency 180 

and a shape parameter (f), which together control the variance. To train our landslide frequency models (refer to section 2.4), 

we required time series of landslide counts by county.  

Historical landslide inventory time series often feature reporting gaps that, if unaccounted for, can lead to 

underestimated landslide frequencies. These gaps arise from the reporting protocols used to construct the inventory. We chose 

to correct for these gaps at the inventory level to take advantage of information on reporting contained in the inventory time 185 

series before breaking these down to the county level. Conceptually, we consider that for each inventory there is a switch that 

turns recording “on,” resulting in a period during which landslide occurrences are documented, or “off,” resulting in a reporting 

gap. Knowing the position of this switch at any given time is needed for accurate landslide frequency estimates but is rarely 

documented in landslide inventory data. For event-based inventories, which are designed to capture individual events, the 

position is always known: if landslides are reported, the switch is on, if no landslides are reported, the switch is off. For 190 

historical inventories, however, the position is only known when it is on: if landslides are reported, the switch is on, if no 

landslides are reported, the position is unknown, unless otherwise documented. The California Geological Survey (2019) 

landslide inventory, for example, has documented landslides between 1906 and 2011, but contains several multiple-year 

periods with no reported landslides (Fig. 1g). These periods can occur either because recording was on, but no landslides 

occurred, or because recording was off. Without documentation of when reporting gaps occurred, we are left to estimate these 195 

from the inventory time series itself. Two simple solutions to this challenge present disadvantages: (1) taking the full time 

series from the first reported to last reported landslide will likely lead to underestimated frequencies because too many zeros 

resulting from reporting gaps enter the model but (2) assuming that all zeros result from reporting gaps and removing these 

from the time series would likely lead to overestimation, as some years with few to no landslides could be expected, for 

example during droughts. Instead, we designed a statistical incompleteness model to estimate the fraction of zeros in each 200 

inventory time series that are true non-occurrences and the fraction that are due to reporting gaps. 

  We chose zero-inflated negative binomial distributions as an incompleteness model to characterize these gaps at the 

inventory level for each historical inventory. Assuming that landslide counts follow a negative binomial distribution, zero-

inflated negative binomial distributions are able to estimate the share of zeros that result from reporting gaps (Bürkner, 2017). 

Zero-inflated negative binomial distributions are a mixture of a binomial and a negative binomial distribution and have an 205 

additional parameter (z). This parameter represents the zero inflation: the fraction of zeros in a dataset that would not be 
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expected according to a negative binomial distribution. For a year with no reported landslides, this is the model’s estimate for 

the probability that the recording switch was in the “off” position. We fit zero-inflated negative binomial distributions to each 

historical inventory to estimate this share of zeros (zv) (Table 1).  

 210 

𝑦!,# ∼ 𝑍𝐼𝑁𝐵(𝜇#, 𝜙#, 𝑧#) 𝐸𝑞. 1 

 

where yi,v is the number of reported landslides in an inventory per year, µv is the expected (average) number of landslides per 

inventory per year, fv is a shape parameter, and zv is the zero-inflation. We assumed that the posterior median share of zeros 

(zv) arose from reporting gaps and removed them from the time series. For the California Geological Survey (2019) landslide 215 

inventory, for example, we estimated that 73% of zeros are due to reporting gaps (Fig. 1g, h; Table 1). We note that because 

we modelled these distributions with stationary parameters over time and assume consecutive years to be independent, the 

exact timing of the reporting gaps is not relevant, but rather the share, such that the gaps in Fig. 1g, are schematic examples. 

This procedure produced a zero-inflation corrected time series for each historical inventory. 

 We sought to estimate landslide frequencies by county and thus needed to create a time series for each county from 220 

available inventory time series. For our training dataset, we selected counties that have at least one landslide reported in an 

inventory created by a state or local entity (Table 1), which gives 316 counties with 62,720 reported landslides (Fig. 1). We 

assumed that these inventories have more reliable reporting over time than inventories created by national or other entities. To 

create a time series for each of these counties, we used the zero-inflation corrected time series for the state or local inventories 

that contained landslides in that county as a base time series (Fig. 1, Table 1, Eq. 1). We then added landslides reported in the 225 

county from other event-based inventories to this time series. For example, in Marin County, California, the base time series 

came from the California Geological Survey (2019) landslide inventory and landslides reported in the USGS California San 

Francisco Bay 2022–2023 event-based inventory (Brien et al., 2023) were added to the time series (Fig. 1i). We reserved the 

NASA Global Landslide Catalog, which formed the basis of the 2023 NRI release, as independent test data and did not include 

it in these time series. These steps resulted in a time series for each training county that we used to train our negative binomial 230 

regression models (Section 2.4).  

 

2.3 County-level landslide frequency predictors 

We modelled landslide frequency as a function of landslide susceptibility, ecological region (ecoregion), and the two 

primary triggering factors at a continental scale: precipitation and earthquakes (Fig. 2). For landslide susceptibility (Fig. 2a–235 

c), we calculated the percent area of each county considered susceptible to landslides from the USGS National Landslide 

Susceptibility Model, which estimates landslide susceptibility at 10-m resolution based on a slope-relief threshold and 

topographic data (Belair et al., 2024; Mirus et al., 2024). We used county boundaries from the U.S. Census Bureau Tiger/Line 
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2023 dataset (U.S. Census Bureau, 2023b) and excluded water bodies from each county’s area with the U.S. National Atlas 

Water Feature Areas dataset (ESRI, 2022). 240 

We used a simplified version of Level I ecoregion as a proxy for regional factors that may influence landslide 

frequency that we do not explicitly consider in our model and which the topography-based USGS National Landslide 

Susceptibility Model does not account for. Ecoregions are areas of general similarity in ecosystems that result from a 

classification that integrates major ecosystem components including geology, physiography, vegetation, climate, and soils 

(Omernik, 2004). Because we expect these factors to also influence landslide activity (Corominas et al., 2014; Reichenbach et 245 

al., 2018), we chose ecoregion as a proxy to delineate areas likely to have broadly similar conditions that contribute to landslide 

frequency. Ecoregions have previously been explored for applications in automated landslide mapping and continental scale 

landslide susceptibility assessment (Nagendra et al., 2022; Woodard et al., 2023). Fourteen Level I ecoregions have been 

identified in the continental United States and Alaska (U.S. Environmental Protection Agency, 2010), which we further 

simplified using proximity to avoid having small regions with no available landslide inventory data. Specifically, we combined: 250 

Eastern Temperate Forests (1766 counties), Tropical Wet Forests (5 counties), and Northern Forests (156 counties) into Eastern 

Forests; North American Deserts (140 counties), Southern Semi-Arid Highlands (3 counties), and Temperate Sierras (5 

counties) into Deserts; and Tundra (7 counties) and Taiga (2 counties). This resulted in seven regions, which we term Deserts 

(DS), Eastern Forests (EF), Great Plains (GP), Marine West Coast Forest (MF), Mediterranean California (MC), Northwestern 

Forested Mountains (NM), and Tundra and Taiga (TT). No Level I ecoregion classification is available for Hawaii (HI), so we 255 

considered it to be its own region. We assigned each county to the ecoregion with greatest overlap. 

For precipitation, we calculated the average number of times that the Guzzetti et al., 2008 global rainfall threshold 

for shallow landslides and debris flows was exceeded at 24 h duration annually (Fig. 2d–f). This intensity-duration threshold 

quantifies a minimum rainfall intensity above which landslides have been observed worldwide and thus serves as a 

conservative indicator of potentially triggering rainfall. Although local rainfall thresholds exist for a few regions of the United 260 

States  (Baum and Godt, 2010; Collins et al., 2012; Patton et al., 2023; Scheevel et al., 2017), no nationwide threshold or 

methods to interpolate spatially between regions are available, so we chose a global threshold. For the continental United 

States (CONUS) and Alaska, we relied on precipitation estimates from the Analysis of Record for Calibration (AORC) version 

1.1 dataset from 2002 through 2021 for CONUS and 2002 through 2019 for Alaska, when the Alaskan record ends. AORC is 

a gridded hydrometeorological dataset with 4.76-km spatial resolution and hourly temporal resolution (Fall et al., 2023). 265 

Although the AORC dataset includes a variety of data sources and slightly different processing methodologies over its period 

of record (refer to Fall et al., 2023 for full details), the period from 2002 through 2024 relies heavily on input data from radar-

based precipitation products, primarily the National Centers for Environmental Prediction (NCEP) Stage IV dataset (Du, 2011; 

Nelson et al., 2016). As such, in this study we focus on the period from 2002–2021 to take advantage of the use of radar data 

in the dataset. AORC 4.76-km data are stored in regional files for individual River Forecast Centers (RFCs), which were 270 

combined onto single grids for CONUS and Alaska before identifying the annual number of instances in each grid cell when 

the Guzzetti et al., 2008 threshold was exceeded. For each county, we then averaged across grid cells and years to obtain a 
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final value for average annual threshold exceedances per year (Fig 2a–c). For Hawaii, which AORC does not cover, we relied 

on meteorological station data from the Global Historical Climatology Network Daily dataset (GHCNd) (National Centers for 

Environmental Information, 2024). We calculated the annual number of threshold exceedances at 24-h duration for all stations 275 

in Hawaii from 2002 through 2021 for consistency with CONUS. We used only years with at least 360 days with reported 

data. We then assigned each station within 15 km of a county to that county and calculated the average annual exceedances 

across stations and years. 

We used the probability of occurrence of an earthquake with a Modified Mercalli Intensity (MMI) greater than or 

equal to VI in 100 years to indicate potential for landslide triggering earthquakes. The MMI scale measures the effect of an 280 

earthquake on the Earth’s surface and ranges from I, indicating a level of shaking that is not felt, to X, indicating extreme 

shaking. We selected an MMI threshold of VI to indicate landslide triggering potential based on a global study of earthquake 

triggered landslides that showed that more than 80% of reported landslides were triggered at or above this level (Tanyaş et al., 

2017). We calculated the average probability of occurrence of an earthquake with an MMI >= VI in 100 years across each 

county using data from the 2023 U.S. National Seismic Hazard Model (NSHM) (Petersen et al., 2023, 2024) (Fig. 2g–i).  285 
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Figure 2. Landslide frequency predictor data for U.S. counties. (a)–(c) Percentage of county area that is susceptible to landslides from 
the U.S. Geological Survey National Landslide Susceptibility Model (Belair et al., 2025). (d)–(e) Average number of times the Guzzetti et 290 
al. (2008) global rainfall threshold for shallow landslides and debris flows was exceeded at 24-h duration annually from 2002 to 2021 
(continental United States (CONUS), Hawaii) and 2002 to 2019 (Alaska). Precipitation from Analysis of Record for Calibration (AORC) 
dataset for CONUS and Alaska (Fall et al., 2023) and Global Historical Climatology Network Daily dataset for Hawaii (National Centers 
for Environmental Information, 2024). (g)–(i) County-average probability of an earthquake with Modified Mercalli Intensity >= VI in 100 
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years from the U.S. 50-State National Seismic Hazard Model (Petersen et al., 2023). (j) )–(l) Simplified ecoregions: Deserts (DS), Eastern 295 
Forests (EF), Great Plains (GP), Hawaii (HI), Marine West Coast Forest (MF), Mediterranean California (MC), Northwestern Forested 
Mountains (NM), and Tundra and Taiga (TT). Modified from Level I Ecoregions of North America (U.S. Environmental Protection Agency, 
2010) (a)–(l): U.S. counties from U.S. Census Bureau Cartographic Boundary Files 1:500,000 (U.S. Census Bureau, 2023a), non-U.S. 
administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and datum: (a), (d), (g), (j) CONUS - Albers North American 
Datum 1983 (EPSG:5070). (b), (e), (h), (k) Alaska - Albers North American Datum 1983 (EPSG:3467). (c), (f), (i), (l) Hawaii - Old Hawaiian 300 
(EPSG:4135).  

2.4 Estimating landslide frequency distributions with Bayesian negative binomial regression 

We applied Bayesian negative binomial regression to estimate the distribution of landslide counts per year for each 

county. We compared a series of models that included landslide susceptibility, frequency of potentially landslide triggering 

precipitation, probability of potentially landslide triggering earthquakes, and ecoregion. We trained these models using zero-305 

inflation corrected time series for 316 counties covered by state or local inventories (Section 2.2) and used it to predict the 

expected, or average, landslide frequency (landslides 1000 km-2 y-1) and the distribution of counts across years. We considered 

two sets of models. The first set, which we refer to as national models, estimated all parameters at a national scale and had the 

general form:  

 310 

y$,% ∼ NB(µ%, ϕ)	

ln(µ&) = β' + β((𝐿&) + β)(𝑀&) + β*(𝑃&) + ln(𝐴&) 𝐸𝑞. 2 

 

where yi,c is the number of reported landslides in a given county (c) per area per year, µc is the expected (average) number of 

landslides per area per year, and f is a shape parameter that, together with µc, controls the variance of the negative binomial 315 

distribution. b0 serves as an intercept for the generalized linear model and refers to the natural logarithm of the frequency if all 

other predictors are at their mean value. Lc is the standardized percent landslide susceptible area, Mc is the standardized 

probability of potentially landslide triggering earthquakes, and Pc is the standardized frequency of potentially landslide 

triggering precipitation; b1-3 are these variable’s coefficients. We included an offset of the natural logarithm of the county’s 

area (Ac) to account for differences in area between counties.  320 

 The second set of models, which we call regionalized models, were multi-level models that included simplified Level 

I ecoregion as a varying intercept, sometimes called a random effect. Multi-level models estimate parameters within and 

between groups, which allows for variation between groups, generally improves inference for groups with few observations, 

and prevents overfitting to groups with many observations (Mcelreath, 2020). By including ecoregion as a grouping variable, 

these models learned a different intercept for each ecoregion, which served as a proxy for the many factors that may influence 325 

landslide frequency that we do not explicitly model, for example, climate, land-cover, and geology. This addition also guarded 

the model from overfitting regions with many reported landslides and still allowed those regions to inform areas with less 

available data. These models have the general form:  
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𝑦!,& ∼ 𝑁𝐵(µ& , ϕ) 330 

𝑙𝑛(µ&) = β',+ + β',, + β((𝐿&) + β)(𝑀&) + β*(𝑃&) + 𝑙𝑛(𝐴&)	

β',, ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, σ,) 𝐸𝑞. 3	

 

where b0,p is a population-level intercept that indicates the mean intercept across ecoregions. b0,r is a group-level intercept for 

each ecoregion that belongs to an overarching distribution of intercepts across all ecoregions with standard deviation sr. We 335 

compared models with various combinations of predictors (Section 2.5).  

 We emphasize that these generalized linear models used standardized predictors for percent landslide susceptible area 

(Lc), probability of potentially landslide triggering earthquakes, and frequency of potentially landslide triggering precipitation 

(Pc). We standardized these predictors by subtracting the mean across counties and dividing by the standard deviation. This 

means that the expected landslide frequency (µc) for each county is estimated as a function of the county’s characteristics 340 

relative to other counties, not the absolute values of the predictor variables shown in Figure 2. If a county has a percent 

landslide susceptibility that is one standard deviation above the mean across counties (Lc = 1), for example, the natural 

logarithm of expected frequency ln(µc) will change by b1 relative to a county with mean percent landslide susceptibility (Lc = 

0). 

 Our national models required priors for f and b0-3. We chose the following weakly informative priors: 345 

ϕ ∼ 𝑙𝑜𝑔𝑁(0,1)	

β' ∼ 𝑁(−4.5,3) 

β(-* ~	N(0,1) Eq. 4	

Our regionalized models required an additional prior for	𝜎, .	We	chose:		

σ, ∼ 𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑡(3,0,2.5) 𝐸𝑞. 5	350 

 

Our choices of a log-normal prior for f and a half Student-t prior for 𝜎, are consistent with the need for a positive 

shape parameter and standard deviation. As f ® ¥, the negative binomial distribution’s variance decreases, approaching a 

Poisson distribution; as f ® 0, variance approaches ¥. Our choice of prior for f acknowledges overdispersion in landslide 

count data compared to a Poisson distribution and constrained variance to a reasonable range. Our choice of prior for b0 encodes 355 

our belief that landslide frequencies will be well below one landslide km-2 y-1 in areas with average predictor values, and our 

choice of priors for b1-3 allow for both positive or negative correlations between frequencies and predictor values. These weakly 

informative priors do not exclude any values that might be learned from the data and, given the large number of landslide 

observations in our dataset, primarily serve to start the sampler in a reasonable range. 

 We fit the models using Markov Chain Monte Carlo (MCMC) via the R package brms v2.21.0 (Bürkner, 2017), which 360 

calls STAN v2.32.6, a statistical programming language that uses the No U-Turn Sampler (NUTS) Hamiltonian Monte Carlo 

fitting algorithm to characterize the posterior parameter distributions (Stan Development Team, 2023). We ran four chains for 
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4000 iterations, discarding the first 1000 iterations as warm up, for a total of 12,000 post-warmup draws. The Gelman-Rubin 

coefficient (R-hat) was 1.00 for all parameters, indicating that chains converged. These diagnostics indicate acceptable fitting 

algorithm performance (Kruschke, 2014; McElreath, 2020).  365 

 Bayesian statistical models provide intrinsic estimates of parameter uncertainty (Kruschke, 2014; McElreath, 2020; 

van de Schoot et al., 2021). Parameter estimates are conditional on the available data and transparently express uncertainty 

through posterior parameter distributions. Posterior distributions are distributions of all parameters that are consistent with the 

data, prior, and model, weighted by their probability. We report median posterior parameter estimates, which is the median of 

the posterior distribution, and 95% quantile interval (QI) as credibility intervals, which encompass 95% of the posterior 370 

distribution. Wider posterior distributions (higher 95% QI) indicate more parameter uncertainty, whereas narrower posterior 

distributions indicate less parameter uncertainty (lower 95% QI). Posterior predictive distributions are simulations from the 

model that use the full posterior parameter distributions. In this way, when we make predictions with Bayesian models, for 

example, by simulating the distribution of landslide counts for each county, we naturally propagate parameter uncertainty into 

our predictions. 375 

 

2.5 Model comparison 

We compared 10 total national and regionalized model set ups with differing combinations of predictors to arrive at 

a preferred landslide frequency model (Table 2). We used two criteria for our selection: (1) Leave-One-Out (LOO) Information 

Criterion and (2) physically plausible parameter values. LOO estimates the out-of-sample predictive accuracy of each model 380 

(Vehtari et al., 2017). A lower LOO value indicates better estimated out-of-sample predictive accuracy and vice versa. 

Although we also considered error as a goodness-of-fit measure in our additional evaluation of the preferred model (section 

2.6), we preferred information criteria for model comparison because this approach penalizes models with higher numbers of 

parameters that may achieve better fits to the training data but worse generalizability (overfitting). We required that parameter 

estimates for b1-3 reflect physically plausible, positive relationships between the chosen predictors and landslide frequency. 385 

Based on these criteria, we selected a regionalized model that included landslide susceptible area and probability of potentially 

triggering earthquakes as our preferred model.  
Table 2. Model comparison. The preferred model is indicated with a * and in bold text. Leave-one-out (LOO) information criteria and its 
standard error (SE) are reported for each model. 

National models         

Generalized linear model LOO LOO 
SE 

𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝝓  

𝑙𝑛(𝜇%)	

= 𝛽& 

 

24781 505 -6.62 

(-6.71, 

-6.53) 

   -3.71 (-

3.76, -

3.65) 
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ln(µ%)	

= β& + 𝛽'𝐿% 

24784 511 -6.90 

(-7.06, 

-6.73) 

0.30 

(0.14, 

0.47) 

  -3.70 (-

3.75, -

3.65) 

 

𝑙𝑛(µ%) = β& + β'𝐿% + β(𝑀%	

 

24154 488 -8.61 

(-8.76, 

-8.50) 

0.92 

(0.81, 

1.03) 

0.56 

(0.51, 

0.60) 

 -3.49 (-

3.54, -

3.45) 

 

𝑙𝑛(µ%) = β& + β'𝐿% + β)𝑃%	

 

24508 481 -7.43 

(-7.60, 

-7.27) 

0.95 

(0.79, 

1.11) 

 -0.45 

(-0.50, 

-0.40) 

-3.62 (-

3.67, -

3.57) 

 

𝑙𝑛(𝜇%) = 𝛽& + 𝛽'𝐿% + 𝛽(𝑀% + 𝛽)𝑃% 24132 484 -8.55 

(-8.71, 

-8.40) 

1.03 

(0.91, 

1.15) 

0.50 

(0.45, 

0.56) 

-0.18 

(-0.26, 

-0.10) 

-3.49 (-

3.54, -

3.44) 

 

Regionalized models         

Generalized linear model LOO LOO 
SE 

𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝝓  

𝑙𝑛(µ%) = β&,+ + β,,-	

 

24258 503 -7.65 

(-9.77, 

-5.42) 

   -3.53 (-

3.58, -

3.48) 

2.79 

(1.45, 

4.89) 

𝑙𝑛(µ%) = β&,+ + β&,- + β'𝐿% 

 

24099 484 -8.15 

(-

10.09, 

-6.11) 

0.89 

(0.76, 

1.01) 

  -3.48 (-

3.53, -

3.43) 

2.52 

(1.35, 

4.49) 

𝑙𝑛(µ%) = β&,+ + β&,- + β'𝐿% + β(𝑀%* 

 

24044 483 -8.90 
(-
10.40, 
-7.38) 

0.96 
(0.83, 
1.08) 

0.45 
(0.35, 
0.56) 

 3.46 (-
3.50, -
3.40) 

1.72 
(0.50, 
3.36) 

ln(µ%) = β&,+ + β&,- + β'𝐿% + β)𝑃% 

 

24081 482 -8.29 

(-

10.26, 

-6.36) 

0.98 

(0.85, 

1.11) 

 -0.22 

(-0.31, 

-0.13) 

3.47 (-

3.52, -

3.42) 

2.40 

(1.19, 

4.29) 

𝑙𝑛(µ%) = β&,+ + β&,- + β'𝐿% + β(𝑀%

+ β(𝑃% 

 

24041 482 -8.92 

(-

10.50, 

-7.44) 

1.01 

(0.88, 

1.13) 

0.42 

(0.31, 

0.53) 

-0.13 

(-0.23, 

-

0.037) 

-3.45 (-

3.51, -

3.40) 

1.74 

(0.48, 

3.41) 

 390 

2.6 Model evaluation 

We evaluated our preferred model results with three criteria: fit (estimated compared to reported), robustness 

(training-test cross-validation), and comparison to previous landslide frequency estimates from the NRI. To evaluate fit, we 

calculated reported landslide frequency for our training counties by dividing the total number of reported landslides by the 
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number of years in the zero-inflation corrected time series for that county and the county’s area. We then computed error 395 

(residuals) by subtracting the reported frequency from the model’s posterior median estimated frequency. To evaluate 

robustness, we performed k-fold training-test cross validation, randomly splitting our training counties further into training 

(80% of counties) and testing (20% of counties) folds. We re-fit the model to the training fold and used it to predict the average 

landslide frequency for counties in both the training and testing folds. We then computed error (predicted – reported) for each 

of these folds, repeating the process 10 times. A similar error distribution indicates that the model is robust and not overly 400 

influenced by the training counties selected, whereas a markedly different error distribution indicates that the model is sensitive 

to the training counties selected. We also compared our model’s county-level average landslide frequency estimates to those 

reported in the March 2023 release of the NRI (Federal Emergency Management Agency, 2023a). Because the NRI is based 

on NASA’s COOLR dataset (Juang et al., 2019), we excluded this dataset from our training data. The NRI thus serves as an 

independent comparison. 405 

3 Results 

We found that average annual landslide frequencies varied by five orders of magnitude across U.S. counties, reflecting 

the country’s strong variation in landslide susceptibility, earthquake probability, and other factors for which ecoregion serves 

as a proxy, based on our preferred model (Fig. 3). Frequency estimates ranged from 0.002 (0.0001–0.05) landslides 1000 km-

2 y-1 in Kusilvak Census Area, Alaska, a county with low landslide susceptibility (17% susceptible area) and low triggering 410 

earthquake potential located in the Tundra and Taiga ecoregion to 31 (21–43) landslides 1000 km-2 y-1 in Lake County, 

California, a county with high landslide susceptibility (93% susceptible area) and high triggering earthquake probability 

located in the Mediterranean California ecoregion (Figs. 2, 3). Here we refer to frequencies per area, which allows for a fairer 

comparison between large counties and small counties. For reference, U.S. county areas range from 120 km2 (Hudson County, 

New Jersey) to 377,055 km2 (Yukon-Koyukuk Census Area, Alaska). Estimated uncertainties, shown as the range of the 95% 415 

quantile interval, generally followed the pattern of estimated frequencies (Fig. 3). Low uncertainties in areas with low estimated 

frequencies express the model’s confidence that few landslides are likely to be reported, whereas higher uncertainties in high 

frequency areas reflect the model’s prediction that many landslides are likely, but exactly how many is difficult to pinpoint. 

Particularly high uncertainties in earthquake-prone areas likely demonstrate the potential for high numbers of landslides in 

widespread events, but few reported events in the training data. The Tundra and Taiga ecoregion shows low estimated 420 

frequencies with relatively high uncertainties, reflecting the few reported landslides but relevant landslide susceptibility and 

triggering earthquake probability in this region. 
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Figure 3. Average annual landslide frequency by county. (a)–(c) Posterior median expected (average) annual landslide frequency 1000 
km-2 y-1

 for 50-state U.S. counties. Lake County, California (CA) had the highest estimated frequency and Kusilvak Census Area, Alaska 425 
(AK) the lowest. (d)–(f) Range of posterior 95% quantile interval (QI). Base map data in (a)–(f): U.S. counties from U.S. Census Bureau 
Cartographic Boundary Files 1:500,000 (U.S. Census Bureau, 2023a), non-U.S. administrative boundaries from Natural Earth (Natural Earth, 
2022). Projection and datum: (a), (d) continental United States - Albers North American Datum 1983 (EPSG:5070). (b), (e) Alaska - Albers 
North American Datum 1983 (EPSG:3467). (c), (f) Hawaii - Old Hawaiian (EPSG:4135). 

 Counties with the highest estimated frequencies tend to have high percentages of landslide susceptible area and are 430 

in areas with high triggering earthquake probability, landslide prone ecoregions, or both (Fig. 2, 3). Counties with estimated 

frequencies in the top 20% of all counties from our preferred model are predominately along the West Coast of CONUS, in 

mountainous regions of the Pacific Northwest and Intermountain West, in locally steep or earthquake prone regions of the 

Midwest and Southeast, along the Appalachians, in southern Alaska, and on some Hawaiian Islands (Fig. 4). Model parameter 

estimates from our preferred model showed that both percent susceptible area and potentially triggering earthquake probability 435 

had a credibly positive effect on landslide frequency (Fig. 5), but the effect of susceptible area is larger. With one standard 

deviation increase in percent susceptible area, the natural logarithm of landslide frequency, ln(µ), was estimated to increase 

by 0.96 (0.83–1.1) (b1); with one standard deviation increase in potentially triggering earthquake probability, the natural 

logarithm of landslide frequency was estimated to increase by 0.45 (0.35–0.56) (b2). Considering equal percent susceptible 

area and potentially triggering earthquake probability, counties in the MC, MF, EF, and GP ecoregions had above average 440 

posterior median landslide frequency estimates, whereas counties in the ND, NM, and TT ecoregions had below average 

estimates (Figure 5b). However, only TT was credibly distinguishable from the mean across all ecoregions when taking into 

account the full posterior distributions (95% QI). Given the lack of available training data, HI took the mean across ecoregions. 
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Overall, we observed that learning from landslide inventory data substantially reduced parameter uncertainty compared to the 

prior (Fig. 5).  445 

 
Figure 4. Landslide frequency distribution across counties. (a)–(c) Quantile class of county-level landslide frequency (average landslides 
1000 km-2 y-1) compared to other counties. For example, counties in the 80–100 class have frequencies higher than the other 80% of counties. 
The 50 U.S. states and their abbreviations are Alabama (AL), Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), 
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Connecticut (CT), Delaware (DE), Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), 450 
Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN), Mississippi (MS), 
Missouri (MO), MT (Montana), Nebraska (NE), Nevada (NV), New Hampshire (NH), New Jersey (NJ), New Mexico (NM), New York 
(NY), North Carolina (NC), North Dakota (ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI), South 
Carolina (SC), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA), West Virginia (WV), Wisconsin 
(WI), Wyoming (WY). Base map data in (a)–(c): U.S. counties from U.S. Census Bureau Cartographic Boundary Files 1:500,000 (U.S. 455 
Census Bureau, 2023a), non-U.S. administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and datum: (a) continental 
United States Albers North American Datum 1983 (EPSG:5070). (b) Alaska Albers North American Datum 1983 (EPSG:3467). (c) Old 
Hawaiian (EPSG:4135). 

  

 460 
Figure 5. Parameter distributions. (a) Prior and posterior parameter distributions. Points and bars show the median and 95% quantile 
interval (QI), respectively. In the generalized linear model, b0,p is the population level intercept, b1 is the coefficient of standardized percent 
landslide susceptible area, and b2 of is the coefficient of standardized probability of potentially landslide triggering earthquakes. f is the 
shape parameter of the negative binomial distribution, and 𝜎! describes the spread between ecoregion groups. (b) Expected value of the 
posterior distribution at mean probability of potentially landslide triggering earthquakes by ecoregion: Deserts (DS), Eastern Forests (EF), 465 
Great Plains (GP), Marine West Coast Forest (MF), Mediterranean California (MC), Northwestern Forested Mountains (NM), and Tundra 
and Taiga (TT). Lines show the mean and shaded regions the 95th percentile QI. These counterfactual plots visualize how the average 
landslide frequency changes with varying standardized susceptible area in each ecoregion, assuming a constant triggering earthquake 
probability (the mean across counties, 0.15 probability of an earthquake with Modified Mercalli Intensity (MMI) >= VI in 100 years). A 
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standardized susceptible area of 0 indicates the mean percent susceptible area across counties (41%), with 1 indicating one standard deviation 470 
above the mean and -1 indicating one standard deviation below the mean. 

 

 
Figure 6. Model evaluation. (a)–(c) County-level error calculated as the difference between predicted and reported average annual landslide 
frequencies. (d)–(f) Absolute county-level error shown on a log10 scale to better display counties with low errors. (g) Error distributions for 475 
one example training and testing cross validation split. Dotted lines are visual guides at errors of -1 and 1 landslides 1000 km-2 y-1. (h) 
Reported versus predicted average annual landslide frequencies (points; error bars show 95% quantile intervals). Dashed line is a visual 
guide at a 1:1 ratio, indicating zero error. Dotted lines are visual guides at errors of -1 and 1 landslides 1000 km-2 y-1. Colors correspond to 
absolute error scale from panel (d). Base map data in (a)–(f): U.S. counties from U.S. Census Bureau Cartographic Boundary Files 1:500,000 
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(U.S. Census Bureau, 2023a), non-U.S. administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and datum: (a), (d) 480 
continental United States Albers North American Datum 1983 (EPSG:5070). (b), (e) Alaska Albers North American Datum 1983 
(EPSG:3467). (c), (f) Old Hawaiian (EPSG:4135).  

 

Comparing models with different combinations of predictors provided insights into factors that influence landslide 

frequency at national and regional scales and lead us to a preferred model that considered susceptible area, earthquake 485 

probability, and ecoregion. The national model that considered only landslide susceptible area had a lower estimated out-of-

sample predictive accuracy (LOOIC) than national models that included susceptible area along with potentially triggering 

earthquake probability or precipitation frequency (Table 2). This indicates that susceptible area alone provides limited 

information about landslide frequency at a national scale. Including earthquake probability markedly improved estimated 

predictive accuracy and resulted in positive parameter estimates for b1 and b2, indicating estimated increases in landslide 490 

frequency with increasing susceptible area and earthquake probability. Adding precipitation frequency, however, lead to 

minimal further improvement in predictive accuracy and resulted in a counterintuitive and physically implausible negative 

relationship between landslide frequency and potentially triggering precipitation frequency. This indicates that the average 

frequency of daily precipitation above the global threshold used is too general a metric to add information on national scale 

landslide frequency after susceptibility and earthquake probability are accounted for. In contrast, a regionalized model that 495 

included landslide susceptibility and a varying intercept by ecoregion showed better estimated predictive accuracy than any 

national model. This indicates relevant regional differences in landslide frequency at similar susceptibility levels and that 

ecoregions serve as a useful proxy for factors that influence landslide frequency but were not explicitly modelled. Including 

earthquake probability in this model improved predictive accuracy further, indicating that earthquake probability is relevant 

even after accounting for susceptible area and ecoregion, whereas, as in the national model, precipitation frequency had a 500 

negligible effect on predictive accuracy. Based on its comparatively high estimated predictive accuracy and physically 

plausible parameter estimates, we selected the regionalized, multi-level model with susceptible area, earthquake probability, 

and ecoregion as our preferred landslide frequency model. 

Our model evaluation showed that for 76% of counties (239 of 316 training counties), our estimates of average annual 

landslide frequency (median QI) were within one landslide 1000 km-2 y-1 of rates estimated by dividing the total number of 505 

reported landslides by the number of years on record in the training data (Fig. 6h). The remaining 24% were divided between 

overprediction (49 counties, 15% of total) and underprediction (28 counties, 9% of total). Counties where the model 

substantially overpredicted compared to reported data are in some parts of the West Coast and southern Alaska (Fig. 6a-f). 

Notably, these counties are near counties with very low error, which could indicate that true landslide rates are higher than 

reported in these areas. Counties where the model substantially underpredicted are sprinkled through Vermont, North Carolina, 510 

northern California, Oregon, and Idaho, with no notable spatial pattern. These isolated counties may have more detailed 

reporting than their neighbors, have experienced an exceptional widespread event during the reporting period, or have local 

conditions that cause rates of landsliding to be higher than similar counties. We evaluated robustness, or the model’s sensitivity 
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to the specific training data, using k-fold training-test cross-validation (Fig. 6g). We found that the distribution of errors 

between the training and test splits were nearly identical in 10 different folds, indicating that the model is robust and is not 515 

overly influenced by specific counties in the training data.  

Negative binomial regression models predict not just the expected, or average frequency shown in Fig. 2, but also the 

full distribution of landslide counts per year in each county. Both predicted and reported distributions of annual landslide 

counts were heavily right skewed, meaning that many years had few or no landslides, and few years had many landslides. As 

such, any individual year may be far from the average. Marin County, California, for example, had 58 years on record after 520 

zero-inflation correction with 82 total reported landslides, giving an average of 1.4 landslides county-1 y-1 (Fig. 1). However, 

zero landslides were reported in 56 of those years and the two years with reported landslides had 68 and 16 reported landslides, 

demonstrating that it is worthwhile to consider the full predicted distributions rather than only the averages. Figure 7 shows 

the posterior predictive distributions of annual landslide counts 1000 km-2 for a random selection of 50 example counties 

compared to reported data. Median predicted counts 1000 km-2 y-1 are zero in all counties, meaning that the model predicted 525 

no reported landslides for half of the years in a simulated time series. This result is consistent with the training data for most 

counties; 96% of training counties (including Marin County, California) had median reported annual counts of zero. In contrast, 

99th percentile years were predicted to have hundreds of landslides in some counties and fewer than 10 in others (Fig. 7g). 

Although the range of predicted 99th percentile years was within the range of observed values across counties, in some counties, 

like Multnomah County, Oregon, for example, the model underpredicted high magnitude years compared to observed data, 530 

whereas in others, like Kodiak Island Borough, Alaska, the model overpredicted compared to observed data. Counties where 

the model overpredicted may have less complete reporting than counties with similar characteristics, may be prone to 

widespread events that have not occurred during the reporting period, or may have local processes that lead to lower-than-

average rates of landsliding that our national-scale model does not capture. Counties where the model underpredicted, in turn, 

may have more complete reporting, have experienced more extreme landsliding events during the period of record, or have 535 

local processes that lead to higher-than-average rates of landsliding.  
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Figure 7. Predicted distributions of landslide counts per year. (a)–(c) 99th percentile of the posterior predictive distribution for each 
county. The top 1% of years is estimated to have landslide counts at this level or higher. (d)–(f) Counties with more than 10 landslides 1000 
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km-2 y-1 predicted in 99th percentile years compared to whether such a year was reported in our training dataset. (g) Posterior predictive 540 
distributions for 50 randomly selected counties compared to reported data. These counties are in the states of Alaska (AK), Arizona (AZ), 
California (CA), Kentucky (KY), Minnesota (MN), Nebraska (NE), New Jersey (NJ), North Carolina (NC), Oregon (OR), Vermont (VT), 
and Washington (WA) (refer to Fig. 4). Base map data in (a)–(f): U.S. counties from U.S. Census Bureau Cartographic Boundary Files 
1:500,000 (U.S. Census Bureau, 2023a), non-U.S. administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and datum: 
(a), (d) continental United States - Albers North American Datum 1983 (EPSG:5070). (b), (e) Alaska - Albers North American Datum 1983 545 
(EPSG:3467). (c), (f) Hawaii- Old Hawaiian (EPSG:4135).  

Although isolated landslides can be extremely destructive if they impact populated areas, widespread landslide events 

with tens to thousands of landslides cause regional effects. Figure 7a shows the estimated number of landslides 1000 km-2 for 

the 99th percentile (most extreme 1%) of predicted years for each county, which could serve as an indicator of a county’s 

potential for widespread landsliding. We observed that the range of magnitudes across counties was much larger than when 550 

we considered the average: whereas averages ranged from near zero to ~30 landslides 1000 km-2 y-1, 99th percentiles ranged 

from one to more than 700 landslides 1000 km-2 y-1. High intensities have been reported in both earthquake and rainfall-

triggered widespread events: for example, strong winter storms triggered 2315 landslides 1000 km-2 y-1 in Contra Costa County, 

California, in 2016 and the Northridge earthquake triggered 692 landslides 1000 km-2 y-1 in Los Angeles County, California, 

in 1994. Counties with high 99th percentile years are located in areas with high landslide susceptibility and/or high earthquake 555 

hazard; these counties also have high predicted average frequencies because of the influence of years with many landslides.  

Many counties with predicted potential for widespread landslide events had no such events reported in the inventories 

we considered in our training dataset. Figure 7 shows counties with more than 10 landslides 1000 km-2 y-1 predicted in 99th 

percentile years compared to whether such a year was reported in our training dataset. These results show that our model was 

able to identify areas with potential for widespread landsliding, even when such large events were not reported in the training 560 

data for that county. We found that 756 (24%) of U.S. counties had predicted 99th percentile years with >10 landslides 1000 

km-2 y-1, but had no such years in our training dataset; in total, 27% of counties had this potential, including those where they 

have been reported. We observed that many counties with predicted potential for widespread landsliding but no reported events 

(dark brown in Fig. 7d–f) are near counties with similar characteristics that have had reported widespread events (light brown 

in Fig. 7d–f). For example, although years with more than 10 landslides 1000 km-2 y-1 have been reported in most Vermont 565 

counties, neighboring counties in New Hampshire had no reported landslides in our training data; our model predicts that these 

New Hampshire counties have widespread landsliding potential. In 13 counties, years with more than 10 landslides 1000 km-

2 y-1 have been reported but are not predicted by our model. These isolated counties in Arizona, Minnesota, Vermont, and the 

Pacific Northwest likely have local landslide processes that our national-scale model was unable to capture. For example, some 

of the larger reported events in Arizona were post-fire debris flows, which occur under conditions that our model did not 570 

explicitly consider. 

Our landslide frequency estimates were generally higher and more variable than the landslide frequency estimates 

reported in the March 2023 release of the NRI (Figure 8) (Federal Emergency Management Agency, 2023a). The NRI estimates 

were calculated for census tracts, which are smaller than counties, and relied on 3637 landslides reported between 2010 and 

2021 in NASA’s COOLR database. A minimum annual frequency of 0.01 landslides tract-1 y-1 was used to fill in gaps for 575 

https://doi.org/10.5194/egusphere-2025-947
Preprint. Discussion started: 1 April 2025
c© Author(s) 2025. CC BY 4.0 License.



28 
 

tracts with no reported landslides, and census tract level estimates were aggregated to county level using area-weighted 

averages. As a result, NRI landslide frequency estimates ranged from 0 to 1.3 landslides county-1 y-1 (Figure 8b) (Federal 

Emergency Management Agency, 2023b). Our estimates, which used 62,720 landslides reported over varying time periods as 

training data (Table 1, Fig. 1) and statistical modeling to fill gaps, ranged from 0 to 177 landslides county-1 y-1 (median QI). 

We did not include reported landslides from the COOLR database in our training data, such that it serves as an independent 580 

validation. Our results showed elevated landslide frequencies in many counties with low estimated frequencies in the NRI and 

were also more spatially consistent because our model took susceptibility and controls on triggering conditions into account 

rather than relying on a small and dispersed sample of reported landslides. We also provided estimates for the state of Alaska, 

which has counties with some of the highest estimated frequencies nationwide and was not included in the previous NRI 

release. 585 
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Figure 8. Comparison to county-level landslide frequencies from the National Risk Index (NRI) March 2023 release. (a)–(c) Average 
landslide frequencies (landslides county-1 y-1; posterior median) for 50-state U.S. counties from this study. Note that these results are not 
normalized by area for consistency with the NRI; large counties will have higher estimated frequencies than small counties with the same 
landslide susceptibility and triggering characteristics. (d)–(f) Average landslide frequencies (landslides county-1 y-1) for 50-state U.S. 590 
counties from the Federal Emergency Management Agency (FEMA)’s National Risk Index (NRI) March 2023 release (Federal Emergency 
Management Agency, 2023a). Base map data in (a)–(c): U.S. counties from U.S. Census Bureau Cartographic Boundary Files 1:500,000 
(U.S. Census Bureau, 2023a), non-U.S. administrative boundaries from Natural Earth (Natural Earth, 2022). (d)–(f): U.S. counties and 
landslide frequency estimates from FEMA National Risk Index March 2023 release (Federal Emergency Management Agency, 2023a), non-
U.S. administrative boundaries from Natural Earth (Natural Earth, 2022). Projection and datum: (a), (d) continental United States - Albers 595 
North American Datum 1983 (EPSG:5070). (b), (e) Alaska - Albers North American Datum 1983 (EPSG:3467). (c), (f) Hawaii - Old 
Hawaiian (EPSG:4135).  

4 Discussion 

We present the first map of landslide frequencies for the entire United States, which we report at the county level 

across all 50 states. Our probabilistic estimates result from a Bayesian statistical model trained with data from counties with 600 

high-quality landslide inventories and account for gaps in reporting over time. We incorporated spatial information on terrain 

susceptibility and the relative frequency of potentially landslide triggering conditions, which allowed for a consistent and 

accurate estimate of landslide hazard, even in areas without temporal constraints on landsliding. This approach offers 

advantages over approaches that assume that landslide inventories are complete in space and time. For example, Yuan and 

Chen (2023) applied a machine-learning model over CONUS and demonstrated that it predicted landslides only in those 605 

regions where they have been previously observed, but not in regions without any landslide timing data. Our model, in contrast, 

predicted the full distribution of landslide counts per year for each county, including for regions with known landslide 

susceptibility, but few or no landslides with reported timing. Furthermore, we report transparent uncertainty ranges for our 

estimates of annual landslide frequency and evaluate potential for the most extreme widespread landsliding events. These 

uncertainties reflect the difficulty in constraining a complex hazard that involves both landscape evolution processes over 610 

geologic time and the stochastic triggering conditions that are critical on the shorter timescale of concern for human effects. 

Comparing models with differing sets of predictor variables highlighted the utility of interpretable data-driven models for 

landslide frequency estimation, as they allowed us to identify and exclude models with satisfactory predictive accuracy but 

physically implausible parameter estimates.  

Our results are largely consistent with available reported ranges of landslide recurrences from studies over smaller 615 

regions based on localized data and models. For example, Wooten et al. (2016) showed that widespread landslide events with 

hundreds of landslides occur every nine years and thousands of landslides every 25 years across southern Appalachia. Cordeira 

et al. (2019) found at least 254 landslide days in 142 years of records for the San Francisco Bay Area, although they clarify 

that the actual number of landslides during this interval is known to be incomplete. Overall, three-quarters of our model 

predictions are within one landslide of the observed rates from our inventory. The remaining one-quarter that are less consistent 620 

with observations include predicted larger events with numerous landslides, where the observed number can vary considerably 
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depending on many conditions from reporting biases to storm or earthquake size and extent and whether such events have 

occurred during the observation period.  

One noteworthy advantage of using negative binomial distributions is that it enables us to consider the potential for 

extreme events, even for areas where they have not yet been recorded; this results in a much broader and realistic range of 625 

landslide frequencies than previous estimates. In contrast, the existing NRI model took a simpler approach to addressing 

landslide frequency by dividing the number of landslides reported in a news and citizen scientist based inventory by the length 

of record between 2010 and 2021, and then assigning a constant value to areas without sufficient data (Federal Emergency 

Management Agency, 2023b). This resulted in an underestimated and overly narrow range of landslide frequencies. Our 

model’s predictions were higher, more variable, and more realistic as indicated by the more complete inventory data (Belair 630 

et al., 2025). Given the episodic and dispersed nature of landslides, and the incomplete and sparse historical records relative 

to other geologic hazards such as volcanic eruptions, earthquakes, and tsunamis, accounting for extreme events is important 

when considering estimates of annualized losses and planning risk mitigation efforts.  

Our approach makes advances toward providing consistent landslide frequency estimates at a continental scale across 

the entire United States. However, limited understanding of how specific triggering conditions influence landslide activity 635 

across different regions of the country presented a considerable challenge to developing locally accurate estimates of landslide 

frequency. Accounting for these knowledge gaps required simplifying assumptions when selecting predictor variables to 

characterize seismic and hydrometeorological triggering conditions. Further research on regional landslide triggering 

conditions could ultimately lead to major improvements in local estimates of landslide hazard. In the United States, rainfall 

thresholds for shallow landslides are known to vary regionally (e.g., Baum and Godt, 2010), but this variability has not been 640 

linked to specific environmental or terrain attributes that could be used to constrain thresholds across the entire country. Indeed, 

our model comparison showed that including the frequency of daily precipitation above a global threshold added little 

additional information on landslide frequency and resulted in a counterintuitive negative relationship between precipitation 

and landslide frequency. One explanation for this is that infrequently occurring storms with high precipitation accumulations 

have triggered widespread landsliding in areas that are often dry, for example atmospheric rivers in the San Francisco Bay 645 

Area (Corbett and Collins, 2023a; Thomas et al., 2018). Linking landslide occurrences to both frequency and magnitude of 

precipitation beyond a single intensity-duration threshold could improve estimates but additional research would be needed to 

characterize the hydrometeorological conditions that are relevant for triggering landslides across the country. Thus, expansion 

beyond currently existing local studies would be needed (e.g., Collins et al., 2020; Oakley et al., 2017). For example, landslide 

frequency estimates for Hong Kong, which has an area smaller than many U.S. counties (1110 km2), were based on predicted 650 

landslide response to specific triggering storm scenarios. The estimated recurrence intervals of those storms were then used to 

constrain landslide frequency (Ko and Lo, 2018). Nevertheless, including ecoregion in our model served as an effective proxy 

for climate and other conditions that we did not explicitly incorporate, improving predictive accuracy. 

Similarly, linking earthquake-triggered landslide activity to seismological parameters in specific regions (Luo et al., 

2022; Marc et al., 2017; Meunier et al., 2007; Tanyaş et al., 2017) could allow for improved landslide frequency estimation. 655 
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Our model comparison showed that including the 100-year probability of earthquakes with MMI >= VI improved predictive 

accuracy beyond models that considered only susceptible area and ecoregion, demonstrating its utility as a county-level 

indicator at a continental scale. However, as with precipitation, considering both frequency and magnitude of triggering 

earthquakes beyond a simple threshold would likely provide additional detail. The USGS Ground Failure product, for example, 

relies on peak ground velocity and a suite of other factors to predict areas expected to experience landslides from specific 660 

earthquakes (Allstadt et al., 2022; Nowicki Jessee et al., 2018). Integrating this knowledge with estimated earthquake 

frequencies from the NSHM could improve frequency estimates for earthquake-triggered landslides. We also acknowledge 

that areas with high earthquake probability tend to have higher uplift and erosion rates that likely correlate with increased 

landslide frequency, even in the absence of specific triggering earthquake events in our inventory data for some counties. 

Moreover, differentiating by slope failure type could improve characterization of frequencies based on the expected range of 665 

triggering conditions associated with these types: our model may not adequately capture the isolated large deep-seated 

landslides triggered by prolonged low-intensity rainfall over several weeks or months, for example. Given the uncertainty in 

the spatial and temporal controls that drive landsliding over an area as vast as the United States, our pragmatic approach 

provides a framework and benchmark at continental scales, and we expect that improved regional sub-models would likely 

lead to further improvements in our estimates. 670 

Overall, our landslide frequency estimates are likely conservative, as reported landslides are known to be a small 

subset of all landslides and our historical records include only a few truly extreme events relative to the geologic timescale of 

landscape evolution. The influence of under-reporting is particularly pronounced in the Tundra and Taiga ecoregion in Alaska, 

which has few reported landslides in our inventory data despite substantial potential for landsliding, for example due to 

permafrost degradation (Patton et al., 2019). Nevertheless, we do offer estimates of reported landslide frequency for all 675 

counties if those counties had landslide inventory data like the counties with the most comprehensive information available 

nationwide and account for the spatial distribution of landsliding by including terrain and triggering characteristics in our 

model. Our results successfully addressed the primary objective of providing improved input on landslide frequencies for 

pending revisions to FEMA’s national-scale risk assessment and can also inform other risk reduction and loss mitigation efforts 

across the United States (Godt et al., 2022).  680 

5 Conclusions 

We present a novel framework for estimating landslide frequency across vast areas by leveraging available landslide 

inventory data with reported timing and using statistical modelling to make predictions for areas with limited landslide records. 

Our approach uses Bayesian negative binomial regression to estimate county-level landslide frequency as a function of 

landslide susceptibility, the probability of potentially landslide triggering earthquakes, and ecoregion as a proxy for factors 685 

influencing landslide frequency that we do not explicitly consider in our model. Our method enables accurate estimates of very 

low landslide frequencies and considers potential for extreme, widespread landsliding events. Our results are consistent with 
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existing landslide occurrence data and previous local frequency estimates but represent the range of possible landslide 

frequencies and spatial variations across the entire United States more accurately than previous national estimates reported in 

the NRI. These contributions represent an advance for the United States by taking a major step beyond the current national 690 

landslide susceptibility map that shows only where landslides are likely (regardless of timescale), to quantifying how landslide 

frequency (how often) varies across the entire nation. This step towards a national landslide hazard model is limited by data 

availability and process understanding of regionally specific landslide response to triggering conditions. As such, by 

incorporating future data collection and research advances, our framework can be updated to drive further improvements in 

continental-scale modelling of landslide frequency for hazard and risk assessments. 695 
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